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This paper reports the growth and spectroscopic properties of Nd3*:LizBaLn3(MoO4)s (Ln=La,
Gd) crystals. Nd3*:LizBayGds(MoO,4)s crystal with dimensions of 40 mm x 40mm x 10mm and
Nd3*:LisBayLas(MoOy)s crystal with dimensions of 15mm x 28 mm x 8.0 mm have been successfully
grown from a flux of Li;MoO4. The spectroscopic properties of both crystals were investigated. The results
show that Nd3*:LizBa;Ln3(Mo0O,4)s (Ln=Gd, La) crystals may be regarded as a potential solid-state laser
host material for diode laser pumping.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

With the development of diode-pumped solid-state lasers, the
research on new laser materials has been gained much interest
[1-22]. Some Nd3*-doped molybdate crystals have been attracted
attention because they have high-quantum efficiency [22-24]. The
compound LizBa;Ln3(Mo0Oy4)g (Ln=La-Lu, Y), which was discovered
by Klevtsova et al.[25], belongs to the monoclinic system with space
group C2/c. In previous work, the efficient laser performance has
already been obtained in Nd3*-doped Li3Ba,Gd3(Mo0Q4)g [26,27].
However, to our knowledge, the detailed growth method and the
spectroscopic analysis of Nd3*:LisBa,Gd3(Mo0Q,4)s have not yet
been reported. Recently, we have reported the growth and spec-
tral properties of Nd3*-doped LizBa, Y3(MoO4)g [28]. Therefore, this
paper further reports the growth and spectroscopic characteristics
of Nd3*-doped LizBayLn3(Mo0Qy,)s (Ln=Gd, La) crystals.

2. Crystal growth

Since LizBa;Ln3(MoO4)s (Ln=La, Gd) compound melts incon-
gruently, it is only grown by the flux method. Li3Ba;Ln3(MoOg4)g
(Ln=La, Gd) crystals were grown from a flux of Li;MoO4 by the
top seeded solution growth (TSSG) method. The chemicals used
were Li; CO3, BaCO3, Gd, 03, La;03, Nd, 03 and MoOs3 with purity of
99.99%. The stoichiometric amounts of raw materials were weighed
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according to the following chemical reaction:
3Li,CO3 + 2BaCOs3 + 6(1 — x)Lny 03 + 6xNd; 03 + 16M00s
= 2Li3B&2LH(3_3X)Nd3X(MOO4 )8 + COZ 0 (1 )

After grinding and extruding to form pieces, the samples were
placed in a platinum crucible and held at 900 °C for 3 days, repeat-
ing once again to assure adequate solid-state reaction. The growth
of LizBa;Ln3(MoOg4)g (Ln=La, Gd) crystals were carried out in
a vertical tubular furnace with nickel-chrome wire as heating
element. A temperature controller of AL-708 was controlled the
furnace temperature and cooling rate. Li3Ba;Ln3(MoOy4)g (Ln=La,
Gd) crystals were grown from the flux of Li;MoO4 by TSSG method.
The 4at.% Nd3*-doped LizBaLaz(Mo0O4)s and 5 at.% Nd3*-doped
LizBayLaz(MoO4)g and Li;MoO4 were weighed, respectively. The
molar ratio of LizBayLn3(Mo0O,4)g:LiMoO4 was 1:3. The weighed
about 200 g raw materials were placed into the platinum crucible.
The procedure of crystal growth was as following: the fully charged
crucibles were placed into the furnace and heated up to 950°C. The
solution was held at 950°C for 2 days to make the solution melt
completely and homogeneously. The crystals were first grown by
spontaneous nucleation using a platinum wire as seed. The solu-
tion temperature was cooled down to 800°C at a cooling rate of
20°C/day. Then, the obtained polycrystals was drawn out from the
solution and cooled down to room temperature. Secondly, a seed cut
from the as-grown polycrystals was used to grow large single crys-
tal. After repeating the seeding and adjusting the heating power of
the furnace, the seed contacted the surface of the solution. The crys-
tals were grown at a cooling rate of 1°C/day and a rotating rate of
9 rpm. After a period of about 30 days, the crystals were drawn out of
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Fig. 1. Crystals grown by TSSG method: (a) Nd3*:Li3Ba,Gd

the surface of the solution and cooled down to room temperature at
a rate of 25 °C/h. Nd3*:Li3Ba,Gd3(Mo0y,)s crystal with dimensions
of 40mm x 40 mm x 10mm and Nd3*:Li;BayLa3z(MoOy)g crystal
with dimensions of 15mm x 28 mm x 8.0mm were obtained,
as shown in Fig. 1. The compositions of the grown crystals
were measured by the ICP-AES analysis method. The ICP-AES
results are listed in Table 1. The ICP-AES results shown that
the composition of Nd3*:LizBaLn3z(MoO4)g (Ln=Gd, La) crys-
tals is near stoichiometric, i.e. Liy7Ba;Gds 1 Ndgo9dho2(M0O4)s
and LijgzBazLlaz g3Ndg12ho42(M00y4)g (where & represents the
vacancies in the cation site). Previors investigation has shown
that the Li deficiency and excess incorporation of trivalent ions
result in the vacancies in the molybdate crystals [29,30]. There-
fore, ICP-AES results can confirm that the grown crystals belong
to Nd3*:LizBa,Gd3(MoO4)s and Nd3*:LizBasLas(MoOy)g crystals,
respectively.

3. Spectral properties

The samples with dimension 12.1 mm x 8.4 mm x 1.83 mm
for Nd3*:Li3Ba,Gd3(MoO4)s and 11.2mm x 8.1 mm x 1.6 mm for
Nd3*:LizBayLa3(Mo0Q,)g were cut from the as-grown crystals and
polished for the spectral measurement. The absorption spec-
trum was recorded on a PerkinElmer UV-VIS-NIR Spectrometer
(Lambda-900) in a range of 300-1000 nm at room temperature. The
fluorescence spectrum and fluorescence lifetime were measured
at room temperature using an Edinburgh Analytical Instruments
FLS92 excited with 807 nm radiation.

Fig. 2 shows the absorption spectra of Nd3*:LizBa; Gd3(Mo0Q,)s
and Nd3*:LisBayLas(MoQy)s crystals at room temperature. In both
absorption spectra there are six strong absorption bands at near
about 356, 524, 589, 752, 808 and 886 nm, corresponding to 4f3-4f3
transition of Nd3* ions. In the absorption spectra the most inter-
esting is the absorption band at about 805 nm, which is closed to
the emission wavelength of the diode lasers. The FWHM of absorp-
tion bands at 805nm are 6 nm for Nd3*:Li3Ba,Gd3(Mo0Q,)s and
7 nm for Nd3*:LisBayLas(MoOy)g crystals, respectively. Such large
FWHM is very suitable for diode laser pumping, since it is not

Table 1

3(Mo0O4)s crystal; (b) Nd3*:LisBayLas(MoOy)s crystal.
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Fig.2. Absorption spectraatroom temperature: (a) Nd3*:Li3Ba; Gd3(MoO4)g crystal;
(b) Nd3*:LizBazLaz(Mo04)g crystal.

crucial to temperature stability the output wavelength of diode
laser. The absorption cross-sections of Nd3*:LizBa, Gd3(MoOy4)g and
Nd3*:LisBayLas(MoOy4)g crystals are 10.78 and 11.40 x 10720 cm? at
around 805 nm, respectively.

Based on the Judd-Ofelt theory [31,32], the date of absorption
spectrum can be used to predict the oscillator strength parameters,
radiative lifetime and radiative quantum efficiency. The calculating
procedure follows those in Ref. [33]. The calculated results are listed
in Tables 2 and 3.

Fig. 3 shows the fluorescence spectra of Nd3*:Li;Ba;Ln3(MoOy4)g
(Ln=La, Gd) crystals excited with 807 nm radiation at room
temperature. In the fluorescence spectra three emission bands
corresponding to the 4F3, — %lgp, 41312 and 4ly3), transitions are

The composition of Nd3*:LizBa;Ln3(Mo0Oy4)s (Ln=Gd, La) crystals measured by the ICP-AES method.

Crystals Nd3*:LizBay Gd3(MoO4)s Nd3*:LizBazLaz(Mo0Oy4)s

Li? Ba? Gd? Nd? Gd +Nd? Li? Ba? La? Nd? La+Nd?
ICP result (wt.%) 0.83 12.24 21.25 0.603 21.85 0.92 13.9 19.2 0.87 20.07
Atom 0.12 0.089 0.134 0.004 0.138 0.133 0.101 0.138 0.006 0.144
Ratio of atom 2.7 2 3.01 0.09 3.1 2.63 2 2.83 0.12 2.95
Error (%) -10 0 +0.3 - +3.3 -9.0 0 -5.6 - -1.7

2 lons.



M. Song et al. / Journal of Alloys and Compounds 480 (2009) 839-842 841

Table 2
The spectral parameters of Nd3*:Li3Ba;Ln3(MoO4)s (Ln=Gd, La) and other Nd3*-doped crystals.
Crystals 2 24 26
(x10-2° cm?) (x10-20 cm?) (%1020 cm?)
3.4at.% Nd?*:Li3BayGd3(Mo0Q,)s 22.965 6.854 6.395
4.4at.% Nd3*:LizBayLas(Mo0O4)s 19.529 6.394 6.579
2.1 at.% Nd3*:BaGd,(Mo04 )4 14.964 5.044 3.580
5.27 at.% Nd3*:KLa(MoO4 ), 18.50 4.66 4.49
3.0at.% Nd3*:Gd,(MoOy) 8.54 5.53 6.78
4.8 at.% Nd3*:Li3Ba,Y3(Mo0O4)s 221 7.0 6.9
1.5at.% Nd3*:KGd(WO4 ), 12.67 10.15 7.48
4.6 at.% Nd3*:KY(WO4 ), 8.80 3.11 3.16
Nd3*:NaBi(WOy4 ), 30.9 12.0 9.3
8.2 at.% Nd3*:a-LaSc3(B03 )4 3.92 441 414
4.0at.% Nd3*:GdAl3(BO3 )4 1.89 2.55 4.95

FWHM Oq @ 75 (WS) n (%) Ref.
(nm) (x10720 cm?) (x10-20 cm?)
6 10.78 8.7 130 94 This Work
7 11.40 6.2 135 95 This Work
5 3.42 22.1 156 83 [21]
5 11.38 9.7 158 93 [23]
- - - 157 86 [24]
6 10.64 11.6 106 95 [28]
- 26 34 129 92 [35,36]
4 5.18 5.4 154 79 [37]
10 2.6 16 122 85 [38]
- - 13 225 498  [41]
9 4.3 6.3 293 18.7 [33,42]

Table 3
The transition probabilities and branch ratios for the 4F3/2—>4Ij transitions of
Nd3*:Li3BayLn3(MoO4)s (Ln=Gd, La) crystals.

Transition Nd3*:LizBayGds(Mo0O4)s Nd3*:LizBayLas(MoOy4)g

B A(STh) B A(ST)
4F3p, — 4lgpy 0.439 3190 0.439 3190
i = higp 0.467 3392 0.467 3392
4F3/2 - 4113/2 0.090 651 0.090 651
4Fsp — 415 0.005 34 0.005 34

observed at 860-940, 1036-1120, 1320-1405 nm. The emission
cross-section oy of both crystals can be calculated using the fol-
lowing formula [34]:

)\2

Oen) =P gz A

(2)
where A is emission wavelength, 7 is the fluorescence life-
time, Av is the half-width frequency and n is the refractive
index which is estimated as 2, 8 is the fluorescence branch
ratio which is listed in Table 3. Then emission cross-sections
Oem at 1.06 um are 8.7 x 10720 cm? for Nd3*:Li3Ba;Gds(MoOy)s
crystal and 6.2x10720cm?2 for Nd3*:LizBayLa3(MoQ4)s crys-
tal, respectively. The fluorescence lifetimes were measured
to be 130 for Nd3*:Li3BayGds3(MoO4)g crystal and 135 ws for
Nd3*:Li;Ba;Las(MoOy)g crystal, respectively. Then, the quantum
efficiency n of both crystals, where n=1¢/t,q, were calcu-
lated to be 94% for Nd3*:LizBayGd3(MoOy)g crystal and 95% for
Nd3*:LisBayLas(MoOy)g crystals, respectively.
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Fig. 3. Fluorescence spectra excited 807 nm radiation at room temperature: (a)
Nd3*:LizBayGd3(Mo0O4)s crystal; (b) Nd3*:LisBaLas(MoOQ4)s crystal.

4. Conclusion

Nd3*:LizBayGd3(MoO4)g  crystal with  dimensions of
40mm x 40mm x 10mm and Nd3*:LizBayLa3(MoQy)g  crystal
with dimensions of 15mm x 28 mm x 8.0 mm were successfully
grown from the flux of Li;MoO,4. The spectroscopic properties
of Nd3*:LizBayLn3(MoOy4)s (Ln=Gd, La) crystals were investi-
gated. In comparison with the other Nd3*-doped molydbate and
tungstate crystals, Nd3*:LisBayLn3(MoQ,4)g (Ln=Gd, La) crystals
have a large FWHM around 805 nm, which is suitable for diode-
laser pumping. The absorption and emission cross-sections are
smaller than that of Nd3*:KGd(WOQ,),, but larger than that of
the other Nd3*-doped molydbate and tungstate crystals. Both
crystals have a high-fluorescence quantum efficiency as well as
Nd3*:LizBa,Y3(Mo0Qy)g crystal (1=95%) [28]. This phenomenon
also exists in the other molydbate crystals. Such high-quantum
efficiency is ascribed to the low-phonon energy of (MoO4)2~
groups in Nd3*:Li3Ba,Ln3(MoO4)g, which is generally below
1000 cm~! [39,40]. In principle, the high-energy phonons usually
considered to make the dominant contribution to the multiphonon
relaxation from the 4F3/2 state to the nest lower state 4115/2 since
they can interact with electrons to conserve energy in the lowest
order process. When the multiphonon nonradiative relaxation
rate is generally large, it leads to the low-quantum efficiency. The
phonon energy of (MoO4)?~ group is generally below 1000 cm™!
[39,40], while the phonon energy of (BO3)3~ in borate crystals is
1300-1400 cm~! [43]. Therefore, multiphonon nonradiative relax-
ation rate in the molybdate crystal is generally smaller in the borate
crystals, which leads high-quantum efficiency of the molybdate
crystals. In conclusion, Nd3*:Li3Ba;Ln3(MoOy4)g (Ln=La, Gd) crystal
may be regarded as a potential solid-state laser host material.
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